Waste treatment and Sustainable Bioelectricity Generation using Microbial fuel cell


  • Tomas Rebequi UNIFESP
  • Yasmim Pio UNIFESP
  • Carolina Ferreira Andrade Penteado USP
  • Luiza Helena da Silva Martins Federal Rural University of the Amazon
  • Anthony Andrey Ramalho Diniz UNIFESP
  • Andrea Komesu UNIFESP
  • Eduardo Dellosso Penteado




Microbial fuel cells, Bioelectrochemistry, Microbial electron transfer, Wastewater treatment, Renewable energy


In the last decade, great attentions have been paid to microbial fuel cells (MFC) due to the possibility to be the solution for the three bigger world project – energy security, climate changes and waste management. Different from all the conventional wastewater treatment which are energy intensive, MFC can use waste as substrate/fuel to directly generate electricity through microbial reactions in anode and microbial/enzymatic/abiotic electrochemical reactions in cathode. In this sense, the MFC is an emerging technology for treat waste and produce wealth products (energy and some added value substance – organic acids, nutrients). Although, there are a large number of research in new materials and operational conditional to improve the MFC performance, as yet there are practical barriers, such as low power generation, expensive electrode materials and the inability to scale up MFC. Therefore, this work summarizes information about the recent advances in MFC research, focused on MFC configurations, material electrodes, and performances. Limitations and challenges in applying MFC to treat waste are also discussed, moreover future perspective pointed the new hot topics to solve these problems.


Download data is not yet available.


• [1] I. Gajda, J. Greenman, and I. A. Ieropoulos, “Recent advancements in real-world microbial fuel cell applications,” Curr Opin Electrochem, vol. 11, pp. 78–83, 2018, doi: 10.1016/j.coelec.2018.09.006.

• [2] S. S. Kumar, V. Kumar, R. Kumar, S. K. Malyan, and A. Pugazhendhi, “Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications,” FUEL, vol. 255, 2019, doi: 10.1016/j.fuel.2019.115682.

• [3] M. Kamali, Y. T. Guo, T. M. Aminabhavi, R. Abbassi, R. Dewil, and L. Appels, “Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies,” RENEWABLE & SUSTAINABLE ENERGY REVIEWS, vol. 173, 2023, doi: 10.1016/j.rser.2022.113095.

• [4] V. G. Gude, “Wastewater treatment in microbial fuel cells - an overview,” J Clean Prod, vol. 122, pp. 287–307, 2016, doi: 10.1016/j.jclepro.2016.02.022.

• [5] K. Rabaey and W. Verstraete, “Microbial fuel cells: novel biotechnology for energy generation,” Trends Biotechnol, vol. 23, no. 6, pp. 291–298, 2005, doi: 10.1016/j.tibtech.2005.04.008.

• [6] B. E. Logan et al., “Microbial fuel cells: Methodology and technology,” Environ Sci Technol, vol. 40, no. 17, pp. 5181–5192, 2006, doi: 10.1021/es0605016.

• [7] C. Saran et al., “Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation,” Chemosphere, vol. 312, 2023, doi: 10.1016/j.chemosphere.2022.137072.

• [8] U. Schroder, “Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 9, no. 21, pp. 2619–2629, 2007, doi: 10.1039/b703627m.

• [9] Z. W. Du, H. R. Li, and T. Y. Gu, “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy,” Biotechnol Adv, vol. 25, no. 5, pp. 464–482, 2007, doi: 10.1016/j.biotechadv.2007.05.004.

• [10] B. Sen Thapa et al., “Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry,” Bioresour Technol, vol. 347, 2022, doi: 10.1016/j.biortech.2021.126579.

• [11] P. Choudhury et al., “Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives,” RENEWABLE & SUSTAINABLE ENERGY REVIEWS, vol. 79, pp. 372–389, 2017, doi: 10.1016/j.rser.2017.05.098.

• [12] K. C. Wrighton et al., “A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells,” ISME JOURNAL, vol. 2, no. 11, pp. 1146–1156, 2008, doi: 10.1038/ismej.2008.48.

• [13] Y. Choi, E. Jung, H. Park, S. R. Paik, S. Jung, and S. Kim, “Construction of microbial fuel cells using thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius,” Bull Korean Chem Soc, vol. 25, no. 6, pp. 813–818, 2004.

• [14] S. T. Oh, J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, and W. T. Sloan, “Sustainable wastewater treatment: How might microbial fuel cells contribute,” Biotechnol Adv, vol. 28, no. 6, pp. 871–881, 2010, doi: 10.1016/j.biotechadv.2010.07.008.

• [15] J. K. Jang et al., “Construction and operation of a novel mediator- and membrane-less microbial fuel cell,” PROCESS BIOCHEMISTRY, vol. 39, no. 8, pp. 1007–1012, 2004, doi: 10.1016/S0032-9592(03)00203-6.

• [16] G. C. Gil et al., “Operational parameters affecting the performance of a mediator-less microbial fuel cell,” Biosens Bioelectron, vol. 18, no. 4, pp. 327–334, 2003, doi: 10.1016/S0956-5663(02)00110-0.

• [17] A. Aldrovandi, E. Marsili, L. Stante, P. Paganin, S. Tabacchioni, and A. Giordano, “Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell,” Bioresour Technol, vol. 100, no. 13, pp. 3252–3260, 2009, doi: 10.1016/j.biortech.2009.01.041.

• [18] L. P. Huang, J. M. Regan, and X. Quan, “Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells,” Bioresour Technol, vol. 102, no. 1, pp. 316–323, 2011, doi: 10.1016/j.biortech.2010.06.096.

• [19] H. I. Park, J. S. Kim, D. K. Kim, Y. J. Choi, and D. Pak, “Nitrate-reducing bacterial community in a biofilm-electrode reactor,” Enzyme Microb Technol, vol. 39, no. 3, pp. 453–458, 2006, doi: 10.1016/j.enzmictec.2005.11.028.

• [20] K. Y. Cheng, M. P. Ginige, and A. H. Kaksonen, “Ano-Cathodophilic Biofilm Catalyzes Both Anodic Carbon Oxidation and Cathodic Denitrification,” Environ Sci Technol, vol. 46, no. 18, pp. 10372–10378, 2012, doi: 10.1021/es30250661.

• [21] G. W. Chen, S. J. Choi, J. H. Cha, T. H. Lee, and C. W. Kim, “Microbial community dynamics and electron transfer of a biocathode in microbial fuel,” KOREAN JOURNAL OF CHEMICAL ENGINEERING, vol. 27, no. 5, pp. 1513–1520, 2010, doi: 10.1007/s11814-010-0231-6.

• [22] H. S. Sun, S. J. Xu, G. Q. Zhuang, and X. L. Zhuang, “Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review,” JOURNAL OF ENVIRONMENTAL SCIENCES, vol. 39, pp. 242–248, 2016, doi: 10.1016/j.jes.2015.12.006.

• [23] A. G. del Campo, J. Lobato, P. Canizares, M. A. Rodrigo, and F. J. F. Morales, “Short-term effects of temperature and COD in a microbial fuel cell,” Appl Energy, vol. 101, pp. 213–217, 2013, doi: 10.1016/j.apenergy.2012.02.064.

• [24] D. Akman, K. Cirik, S. Ozdemir, B. Ozkaya, and O. Cinar, “Bioelectricity generation in continuously-fed microbial fuel cell: Effects of anode electrode material and hydraulic retention time,” Bioresour Technol, vol. 149, pp. 459–464, 2013, doi: 10.1016/j.biortech.2013.09.102.

• [25] Y. Y. Ye et al., “Impacts of hydraulic retention time on a continuous flow mode dual-chamber microbial fuel cell for recovering nutrients from municipal wastewater,” SCIENCE OF THE TOTAL ENVIRONMENT, vol. 734, 2020, doi: 10.1016/j.scitotenv.2020.139220.

• [26] Y. Ahn and B. E. Logan, “Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures,” Bioresour Technol, vol. 101, no. 2, pp. 469–475, 2010, doi: 10.1016/j.biortech.2009.07.039.

• [27] H. T. Pham et al., “High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell,” Microb Biotechnol, vol. 1, no. 6, pp. 487–496, 2008, doi: 10.1111/j.1751-7915.2008.00049.x.

• [28] E. D. Penteado, C. M. Fernandez-Marchante, M. Zaiat, E. R. Gonzalez, and M. A. Rodrigo, “Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell,” Environ Technol, vol. 38, no. 11, pp. 1333–1341, 2017, doi: 10.1080/09593330.2016.1226961.

• [29] J. C. Wei, P. Liang, and X. Huang, “Recent progress in electrodes for microbial fuel cells,” Bioresour Technol, vol. 102, no. 20, pp. 9335–9344, 2011, doi: 10.1016/j.biortech.2011.07.019.

• [30] F. Borja-Maldonado and M. A. L. Zavala, “Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells,” Heliyon, vol. 8, no. 7, 2022, doi: 10.1016/j.heliyon.2022.e0984916.

• [31] C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, “Microbial fuel cells: From fundamentals to applications. A review,” J Power Sources, vol. 356, pp. 225–244, 2017, doi: 10.1016/j.jpowsour.2017.03.109.

• [32] Y. K. Cho, T. J. Donohue, I. Tejedor, M. A. Anderson, K. D. McMahon, and D. R. Noguera, “Development of a solar-powered microbial fuel cell,” J Appl Microbiol, vol. 104, no. 3, pp. 640–650, 2008, doi: 10.1111/j.1365-2672.2007.03580.x.

• [33] E. D. Penteado, C. M. Fernandez-Marchante, M. Zaiat, P. Canizares, E. R. Gonzalez, and M. A. R. Rodrigo, “Energy recovery from winery wastewater using a dual chamber microbial fuel cell,” JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 91, no. 6, pp. 1802–1808, 2016, doi: 10.1002/jctb.4771.

• [34] M. Grattieri and S. D. Minteer, “Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives,” BIOELECTROCHEMISTRY, vol. 120, pp. 127–137, 2018, doi: 10.1016/j.bioelechem.2017.12.004.

• [35] F. J. Hernandez-Fernandez et al., “Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment,” FUEL PROCESSING TECHNOLOGY, vol. 138, pp. 284–297, 2015, doi: 10.1016/j.fuproc.2015.05.022.

Additional Files



How to Cite

Rebequi, T., Pio, Y., Ferreira Andrade Penteado, C., da Silva Martins, L. H., Andrey Ramalho Diniz, A., Komesu, A., & Dellosso Penteado, E. . (2023). Waste treatment and Sustainable Bioelectricity Generation using Microbial fuel cell. Journal of Science & Sustainable Engineering , 1(1). https://doi.org/10.34024/jsse.2023.v1.15460

Most read articles by the same author(s)