Innovations for the Treatment of Effluents in the Food Industry


  • L. H. S. Martins Federal Rural University of Amazonia (UFRA)
  • A. Komesu Federal University of São Paulo
  • S.B. Silva Federal University of Para (UFPA)
  • A. H. Khalid National University of Sciences & Technology (NUST), Pakistan
  • J. A. R. Oliveira Federal University of Para (UFPA)
  • E. D. Penteado Federal University of São Paulo (UNIFESP)
  • C. B. Teixeira Federal University of Para (UFPA)



Wastewater treatment, food industry ;, methods, new technologies


During the processing phases of the food business, a large amount of water is used, resulting in a large volume of effluents. Raw materials, sanitary water for food processing, transportation, cooking, dissolving, auxiliary water, cooling, cleaning, and so on are all utilized extensively in the business. Traditional anaerobic or aerobic biological wastewater treatment processes can be employed to handle organic compounds found in food sector effluent. However, some hazardous chemicals to a microbial population may be present in the effluent due to varied consumption. The effluent may contain significant levels of suspended particles, nitrogen in various chemical forms, lipids, oils, phosphorus, chlorides, and high organic content. There are traditional and well-established methods for treating effluents in the food industry, such as the coagulation-flocculation process, electrochemical processes, and biological processes, which have proven to be quite effective when used as treatment methods in a variety of industries; however, such methods have limitations. Innovative techniques, such as microbial fuel cells (MFCs), microalgae, water ultrafiltration, nanofiltration, and membrane technologies, can replace or complement traditional methods in the future. The treatment method chosen will be determined by the industry's and its wastewater's characteristics.


Download data is not yet available.


• [1] S. Dave and J. Das, “Technological model on advanced stages of oxidation of wastewater effluent from food industry,” in Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2021, pp. 33–49. doi: 10.1016/B978-0-12-821011-6.00002-5.

• [2] C. Munoz-Cupa, Y. Hu, C. Xu, and A. Bassi, “An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production,” Science of The Total Environment, vol. 754, p. 142429, Feb. 2021, doi: 10.1016/j.scitotenv.2020.142429.

• [3] A. Amin, Gh. Al Bazedi, and M. A. Abdel-Fatah, “Experimental study and mathematical model of coagulation/sedimentation units for treatment of food processing wastewater,” Ain Shams Engineering Journal, vol. 12, no. 1, pp. 195–203, Mar. 2021, doi: 10.1016/j.asej.2020.08.001.

• [4] Y. G. Asfaha, A. K. Tekile, and F. Zewge, “Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: A review,” Clean Eng Technol, vol. 4, p. 100261, Oct. 2021, doi: 10.1016/j.clet.2021.100261.

• [5] A. Aziz, F. Basheer, A. Sengar, Irfanullah, S. U. Khan, and I. H. Farooqi, “Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater,” Science of The Total Environment, vol. 686, pp. 681–708, Oct. 2019, doi: 10.1016/j.scitotenv.2019.05.295.

• [6] S. Jayashree, S. T. Ramesh, A. Lavanya, R. Gandhimathi, and P. V. Nidheesh, “Wastewater treatment by microbial fuel cell coupled with peroxicoagulation process,” Clean Technol Environ Policy, vol. 21, no. 10, pp. 2033–2045, Dec. 2019, doi: 10.1007/s10098-019-01759-0.

• [7] H. J. Mansoorian, A. H. Mahvi, A. J. Jafari, and N. Khanjani, “Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell,” Journal of Saudi Chemical Society, vol. 20, no. 1, pp. 88–100, Jan. 2016, doi: 10.1016/j.jscs.2014.08.002.

• [8] S. S. Low et al., “Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production,” Sustainability, vol. 13, no. 6, p. 3247, Mar. 2021, doi: 10.3390/su13063247.

• [9] A. Ruiz-Marin, L. G. Mendoza-Espinosa, and T. Stephenson, “Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater,” Bioresour Technol, vol. 101, no. 1, pp. 58–64, Jan. 2010, doi: 10.1016/j.biortech.2009.02.076.

• [10] S. Das and N. Mangwani, “Recent developments in microbial fuel cells: a review,” 2010.

• [11] J. M. Arnal, B. Garcia-Fayos, G. Verdu, and J. Lora, “Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10 years of experience on the scope of the AQUAPOT project,” Desalination, vol. 248, no. 1–3, pp. 34–41, Nov. 2009, doi: 10.1016/j.desal.2008.05.035.

• [12] C. Korzenowski, M. Minhalma, A. M. Bernardes, J. Z. Ferreira, and M. N. de Pinho, “Nanofiltration for the treatment of coke plant ammoniacal wastewaters,” Sep Purif Technol, vol. 76, no. 3, pp. 303–307, Jan. 2011, doi: 10.1016/j.seppur.2010.10.020.

• [13] F. Elazhar et al., “Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges,” Process Safety and Environmental Protection, vol. 153, pp. 376–383, Sep. 2021, doi: 10.1016/j.psep.2021.06.025.

• [14] A. G. Tekerlekopoulou, Ch. N. Economou, T. I. Tatoulis, C. S. Akratos, and D. V. Vayenas, “Wastewater treatment and water reuse in the food industry,” in The Interaction of Food Industry and Environment, Elsevier, 2020, pp. 245–280. doi: 10.1016/B978-0-12-816449-5.00008-4.


• [16] K. A. S. Meraz, S. M. P. Vargas, J. T. L. Maldonado, J. M. C. Bravo, M. T. O. Guzman, and E. A. L. Maldonado, “Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements,” Chemical Engineering Journal, vol. 284, pp. 536–542, Jan. 2016, doi: 10.1016/j.cej.2015.09.026.

• [17] C. Zhao et al., “Application of coagulation/flocculation in oily wastewater treatment: A review,” Science of The Total Environment, vol. 765, p. 142795, Apr. 2021, doi: 10.1016/j.scitotenv.2020.142795.

• [18] C. Y. Teh, P. M. Budiman, K. P. Y. Shak, and T. Y. Wu, “Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment,” Ind Eng Chem Res, vol. 55, no. 16, pp. 4363–4389, Apr. 2016, doi: 10.1021/acs.iecr.5b04703.

• [19] G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ Chem Lett, vol. 17, no. 1, pp. 145–155, Mar. 2019, doi: 10.1007/s10311-018-0785-9.

• [20] M. A. Sandoval and R. Salazar, “Electrochemical treatment of slaughterhouse and dairy wastewater: Toward making a sustainable process,” Curr Opin Electrochem, vol. 26, p. 100662, Apr. 2021, doi: 10.1016/j.coelec.2020.100662.

• [21] N. B. Turan, “The application of hybrid electrocoagulation–electrooxidation system for the treatment of dairy wastewater using different electrode connections,” Sep Sci Technol, vol. 56, no. 10, pp. 1788–1801, Jul. 2021, doi: 10.1080/01496395.2020.1788596.

• [22] J. P. P. B. Rech and A. T. Paulino, “Electroflocculation for the treatment of wastewater from dairy food industry: scale-up of a laboratory reactor to full-scale plant,” Clean Technol Environ Policy, vol. 21, no. 5, pp. 1155–1163, Jul. 2019, doi: 10.1007/s10098-019-01682-4.

• [23] G. Varank, S. Yazici Guvenc, and A. Demir, “A comparative study of electrocoagulation and electro-Fenton for food industry wastewater treatment: Multiple response optimization and cost analysis,” Sep Sci Technol, vol. 53, no. 17, pp. 2727–2740, Nov. 2018, doi: 10.1080/01496395.2018.1470643.

• [24] I. Chakchouk, N. Elloumi, C. Belaid, S. Mseddi, L. Chaari, and M. Kallel, “A COMBINED ELECTROCOAGULATION-ELECTROOXIDATION TREATMENT FOR DAIRY WASTEWATER,” Brazilian Journal of Chemical Engineering, vol. 34, no. 1, pp. 109–117, Jan. 2017, doi: 10.1590/0104-6632.20170341s20150040.

• [25] S. Sharma and H. Simsek, “Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods,” Chemosphere, vol. 221, pp. 630–639, Apr. 2019, doi: 10.1016/j.chemosphere.2019.01.066.

• [26] M. Barbera and G. Gurnari, “Wastewater Treatments for the Food Industry: Biological Systems,” 2018, pp. 23–28. doi: 10.1007/978-3-319-68442-0_3.

• [27] G. Research Online, M. Abdulgader, Q. J. Yu, P. Williams, and A. A. L Zinatizadeh, “A review of the performance of aerobic bioreactors for treatment of food processing wastewater Author Copyright Statement Link to published version A review of the performance of aerobic bioreactors for treatment of food processing wastewater.” [Online]. Available:

• [28] T. I. Tatoulis, A. G. Tekerlekopoulou, C. S. Akratos, S. Pavlou, and D. V. Vayenas, “Aerobic biological treatment of second cheese whey in suspended and attached growth reactors,” Journal of Chemical Technology & Biotechnology, vol. 90, no. 11, pp. 2040–2049, Nov. 2015, doi: 10.1002/jctb.4515.

• [29] A. Ashraf, R. Ramamurthy, and E. R. Rene, “Wastewater treatment and resource recovery technologies in the brewery industry: Current trends and emerging practices,” Sustainable Energy Technologies and Assessments, vol. 47, p. 101432, Oct. 2021, doi: 10.1016/j.seta.2021.101432.

• [30] J. B. van Lier, F. P. van der Zee, C. T. M. J. Frijters, and M. E. Ersahin, “Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment,” Rev Environ Sci Biotechnol, vol. 14, no. 4, pp. 681–702, Dec. 2015, doi: 10.1007/s11157-015-9375-5.

• [31] Y.-T. Hung, P. Kajitvichyanukul, and L. K. Wang, “Advances in anaerobic systems for organic pollution removal from food processing wastewater,” in Handbook of Water and Energy Management in Food Processing, Elsevier, 2008, pp. 755–775. doi: 10.1533/9781845694678.5.755.

• [32] B. Abbassi, S. Dullstein, and N. Räbiger, “Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs; experimental and theoretical approach,” Water Res, vol. 34, no. 1, pp. 139–146, Jan. 2000, doi: 10.1016/S0043-1354(99)00108-6.

• [33] G. Carucci, F. Carrasco, K. Trifoni, M. Majone, and M. Beccari, “Anaerobic Digestion of Food Industry Wastes: Effect of Codigestion on Methane Yield,” Journal of Environmental Engineering, vol. 131, no. 7, pp. 1037–1045, Jul. 2005, doi: 10.1061/(ASCE)0733-9372(2005)131:7(1037).

• [34] J. D. Edwards, Industrial wastewater treatment. CRC press, 2019.

• [35] L. Deng et al., “Recent advances in circular bioeconomy based clean technologies for sustainable environment,” Journal of Water Process Engineering, vol. 46, p. 102534, Apr. 2022, doi: 10.1016/j.jwpe.2021.102534.

• [36] K. Obileke, H. Onyeaka, E. L. Meyer, and N. Nwokolo, “Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review,” Electrochem commun, vol. 125, p. 107003, Apr. 2021, doi: 10.1016/j.elecom.2021.107003.

• [37] D. Cecconet, D. Molognoni, A. Callegari, and A. G. Capodaglio, “Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues,” Int J Hydrogen Energy, vol. 43, no. 1, pp. 500–511, Jan. 2018, doi: 10.1016/j.ijhydene.2017.07.231.

• [38] K. Rabaey and W. Verstraete, “Microbial fuel cells: novel biotechnology for energy generation,” Trends Biotechnol, vol. 23, no. 6, pp. 291–298, Jun. 2005, doi: 10.1016/j.tibtech.2005.04.008.

• [39] V. Sharma and P. P. Kundu, “Biocatalysts in microbial fuel cells,” Enzyme Microb Technol, vol. 47, no. 5, pp. 179–188, Oct. 2010, doi: 10.1016/j.enzmictec.2010.07.001.

• [40] Y. Song, L. Xiao, I. Jayamani, Z. He, and A. M. Cupples, “A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing,” J Microbiol Methods, vol. 108, pp. 4–11, Jan. 2015, doi: 10.1016/j.mimet.2014.10.010.

• [41] W.-W. Li, H.-Q. Yu, and Z. He, “Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies,” Energy Environ. Sci., vol. 7, no. 3, pp. 911–924, Nov. 2013, doi: 10.1039/C3EE43106A.

• [42] D. A. Jadhav, A. K. Mungray, A. Arkatkar, and S. S. Kumar, “Recent advancement in scaling-up applications of microbial fuel cells: From reality to practicability,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101226, Jun. 2021, doi: 10.1016/j.seta.2021.101226.

• [43] R. J. Marassi, L. G. Queiroz, D. C. V. R. Silva, F. T. da Silva, G. C. Silva, and T. C. B. de Paiva, “Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater,” J Clean Prod, vol. 259, p. 120882, Jun. 2020, doi: 10.1016/j.jclepro.2020.120882.

• [44] P. S. Parihar, S. Keshavkant, and S. K. Jadhav, “Electrogenic potential of Enterococcus faecalis DWW1 isolated from the anodic biofilm of a dairy wastewater fed dual chambered microbial fuel cell,” Journal of Water Process Engineering, vol. 45, p. 102503, Feb. 2022, doi: 10.1016/j.jwpe.2021.102503.

• [45] A. Faria, L. Gonçalves, J. M. Peixoto, L. Peixoto, A. G. Brito, and G. Martins, “Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell,” J Clean Prod, vol. 140, pp. 971–976, Jan. 2017, doi: 10.1016/j.jclepro.2016.04.027.

• [46] B. Farizoglu and S. Uzuner, “The investigation of dairy industry wastewater treatment in a biological high performance membrane system,” Biochem Eng J, vol. 57, pp. 46–54, Nov. 2011, doi: 10.1016/j.bej.2011.08.007.

• [47] A. E. Franks, N. Malvankar, and K. P. Nevin, “Bacterial biofilms: the powerhouse of a microbial fuel cell,” Biofuels, vol. 1, no. 4, pp. 589–604, Jul. 2010, doi: 10.4155/bfs.10.25.

• [48] V. B. Oliveira, M. Simões, L. F. Melo, and A. M. F. R. Pinto, “Overview on the developments of microbial fuel cells,” Biochem Eng J, vol. 73, pp. 53–64, Apr. 2013, doi: 10.1016/j.bej.2013.01.012.

• [49] J. Jayapriya and S. N. Gummadi, “Scaling up and applications of microbial fuel cells,” in Scaling Up of Microbial Electrochemical Systems, Elsevier, 2022, pp. 309–338. doi: 10.1016/B978-0-323-90765-1.00017-4.

• [50] Y. Ruan, R. Wu, J. C. W. Lam, K. Zhang, and P. K. S. Lam, “Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment,” Water Res, vol. 149, pp. 607–616, Feb. 2019, doi: 10.1016/j.watres.2018.11.010.

• [51] S. M. Henkanatte-Gedera, T. Selvaratnam, N. Caskan, N. Nirmalakhandan, W. Van Voorhies, and P. J. Lammers, “Algal-based, single-step treatment of urban wastewaters,” Bioresour Technol, vol. 189, pp. 273–278, Aug. 2015, doi: 10.1016/j.biortech.2015.03.120.

• [52] K. W. Chew, S. R. Chia, P. L. Show, Y. J. Yap, T. C. Ling, and J.-S. Chang, “Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review,” J Taiwan Inst Chem Eng, vol. 91, pp. 332–344, Oct. 2018, doi: 10.1016/j.jtice.2018.05.039.

• [53] K. B. Satyan, M. V. L. Chhandama, and D. V. Ranjit, “Usage of Microalgae: A Sustainable Approach to Wastewater Treatment,” in Biotechnology for Zero Waste, Wiley, 2022, pp. 155–169. doi: 10.1002/9783527832064.ch11.

• [54] P. Gani et al., “Outdoor phycoremediation and biomass harvesting optimization of microalgae Botryococcus sp. cultivated in food processing wastewater using an enclosed photobioreactor,” Int J Phytoremediation, vol. 24, no. 13, pp. 1431–1443, Nov. 2022, doi: 10.1080/15226514.2022.2033688.

• [55] R. Sirohi, J. Joun, J. Y. Lee, B. S. Yu, and S. J. Sim, “Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium,” Bioresour Technol, vol. 352, p. 127129, May 2022, doi: 10.1016/j.biortech.2022.127129.

• [56] G. Yadav, I. Sharma, M. Ghangrekar, and R. Sen, “A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell,” J Power Sources, vol. 449, p. 227560, Feb. 2020, doi: 10.1016/j.jpowsour.2019.227560.

• [57] K. K. Jaiswal et al., “Microalgae fuel cell for wastewater treatment: Recent advances and challenges,” Journal of Water Process Engineering, vol. 38, p. 101549, Dec. 2020, doi: 10.1016/j.jwpe.2020.101549.

• [58] A. Ferreira et al., “Valorisation of microalga Tetradesmus obliquus grown in brewery wastewater using subcritical water extraction towards zero waste,” Chemical Engineering Journal, vol. 437, p. 135324, Jun. 2022, doi: 10.1016/j.cej.2022.135324.

• [59] N. Hamidian and H. Zamani, “Biomass production and nutritional properties of Chlorella sorokiniana grown on dairy wastewater,” Journal of Water Process Engineering, vol. 47, p. 102760, Jun. 2022, doi: 10.1016/j.jwpe.2022.102760.

• [60] A. Maalej, I. Dahmen-Ben Moussa, F. Karray, M. Chamkha, and S. Sayadi, “Olive oil by-product’s contribution to the recovery of phenolic compounds from microalgal biomass: biochemical characterization, anti-melanogenesis potential, and neuroprotective effect,” Biomass Convers Biorefin, Apr. 2022, doi: 10.1007/s13399-022-02640-9.

• [61] A. W. Mohammad, C. Y. Ng, Y. P. Lim, and G. H. Ng, “Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control,” Food Bioproc Tech, vol. 5, no. 4, pp. 1143–1156, May 2012, doi: 10.1007/s11947-012-0806-9.

• [62] S. Mallakpour and E. Azadi, “Nanofiltration membranes for food and pharmaceutical industries,” Emergent Mater, vol. 5, no. 5, pp. 1329–1343, Oct. 2022, doi: 10.1007/s42247-021-00290-7.

• [63] H.-B. Liu et al., “Current and Future Use of Membrane Technology in the Traditional Chinese Medicine Industry,” Separation & Purification Reviews, vol. 51, no. 4, pp. 484–502, Oct. 2022, doi: 10.1080/15422119.2021.1995875.

• [64] A. Morelos-Gomez et al., “Graphene oxide membranes for lactose-free milk,” Carbon N Y, vol. 181, pp. 118–129, Aug. 2021, doi: 10.1016/j.carbon.2021.05.005.

• [65] C. Baldasso, W. P. Silvestre, N. Silveira, A. P. Vanin, N. S. M. Cardozo, and I. C. Tessaro, “Ultrafiltration and diafiltration modeling for improved whey protein purification,” Sep Sci Technol, vol. 57, no. 12, pp. 1926–1935, Aug. 2022, doi: 10.1080/01496395.2021.2021424.

• [66] E. Díaz-Montes and R. Castro-Muñoz, “Analyzing the phenolic enriched fractions from Nixtamalization wastewater (Nejayote) fractionated in a three-step membrane process,” Curr Res Food Sci, vol. 5, pp. 1–10, 2022, doi: 10.1016/j.crfs.2021.11.012.

• [67] C. Garnier, W. Guiga, M.-L. Lameloise, L. Degrand, and C. Fargues, “Treatment of cauliflower processing wastewater by nanofiltration and reverse osmosis in view of recycling,” J Food Eng, vol. 317, p. 110863, Mar. 2022, doi: 10.1016/j.jfoodeng.2021.110863.

• [68] H. Kyllönen, J. Heikkinen, J. Ceras, C. Fernandez, O. Porc, and A. Grönroos, “Membrane-based conceptual design of reuse water production from candy factory wastewater,” Water Science and Technology, vol. 84, no. 6, pp. 1389–1402, Sep. 2021, doi: 10.2166/wst.2021.326.

• [69] J. Rubio, M. L. Souza, and R. W. Smith, “Overview of flotation as a wastewater treatment technique,” Miner Eng, vol. 15, no. 3, pp. 139–155, Mar. 2002, doi: 10.1016/S0892-6875(01)00216-3.

• [70] R. T. Rodrigues and J. Rubio, “DAF–dissolved air flotation: Potential applications in the mining and mineral processing industry,” Int J Miner Process, vol. 82, no. 1, pp. 1–13, Feb. 2007, doi: 10.1016/j.minpro.2006.07.019.

• [71] R. T. Rodrigues and J. Rubio, “DAF–dissolved air flotation: Potential applications in the mining and mineral processing industry,” Int J Miner Process, vol. 82, no. 1, pp. 1–13, Feb. 2007, doi: 10.1016/j.minpro.2006.07.019.

Additional Files



How to Cite

da Silva Martins, L. H. ., Komesu, A. ., Baleixo da Silva, S. ., Khalid, A. H. ., Rocha de Oliveira, J. A., Dellosso Penteado, E. ., & Barroso Teixeira, C. . (2023). Innovations for the Treatment of Effluents in the Food Industry. Journal of Science & Sustainable Engineering , 1(1).

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)